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been obtained for fields which only approximately 
satisfy Maxwell's equations, and have been obtained 
without requiring the polarizability to be small. 
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Abstract 

The 122 Shubnikov point groups (SPGs) are obtained 
from the 32 ordinary crystallographic point groups 
(OPGs) by taking time inversion into account. Like 
the OPGs, the SPGs can be grouped into 11 Laue 
classes. Tensors can be invariant under space inver- 
sion (stensors), time inversion (ttensors), space- 
time inversion (utensors) or all three inversions 
(i tensors). The restrictions imposed on the form of 
a property tensor by the SPG of the material under 
consideration depend, for i tensors, only on the Laue 
class of the SPG. If these restrictions are known for 
an i tensor, the corresponding restrictions for s, t and 
u tensors of the same rank and internal symmetry can 
be written down immediately for all the 122 SPGs 
and for all orientations in which the SPG under 
consideration appears in the corresponding 
holohedry. These connections provide tests for the 
forms of tensors given in the literature. A number of 
corrections and of possible simplifications are pointed 
out. The results are illustrated by showing how the 
form of the i tensor describing linear electrogyration 
determines the form of the piezoelectric t tensor and 
the piezomagnetic s tensor for all 122 SPGs. Similarly, 
the form of the t tensor describing quadratic elec- 
trogyration is derived explicitly from the i tensor 
describing the piezooptic effect. 

I. Introduction 

The 32 ordinary point groups (OPGs) and the 122 
Shubnikov point groups (SPGs) that are compatible 
with a periodic structure in all three space dimensions 

0108-7673 / 91 / 030226-07503.00 

are often arranged in a two-dimensional table. Its six 
columns essentially correspond to the crystal systems. 
The monoclinic point groups (PGs) appear either in 
the first column together with the anorthic PGs or in 
the second together with the orthorhombic PGs or in 
both in different orientations. PGs having certain 
features in common are placed in the same row. One 
such arrangement is given in International Tables for 
X-ray Crystallography (1952); another, which differs 
in important details (e.g. 7~3m in the same row as 
4mm not as ~,2m), has been proposed by Grimmer 
(1980), who called it the periodic arrangement. It has 
three long columns with PGs in every row and three 
short columns for which PGs are lacking in the same 
rows. He showed that, in his arrangement, each long 
column has the same subgroup structure if subgroups 
appearing several times in different orientations are 
distinguished. The same holds for the subgroup struc- 
ture in the short columns. Groups in a given row have 
certain structural features in common, e.g. having 
space inversion 1, time inversion 1' or space-time 
inversion 1' among their elements or containing such 
inversions only in combination with rotations. In this 
paper it is shown that the restrictions demanded by 
the PG of a material for the form of the tensors 
describing its properties also have features in common 
for all PGs in a given row. These restrictions are 
expressed as usual for the components of the tensor 
in a right-handed orthogonal coordinate system with 
the same length unit on the three axes. Care is taken 
to define completely the orientation of these axes with 
respect to the orientations of the symmetry elements, 
which are expressed by the order of the entries in the 
Hermann-Mauguin symbol. 

O 1991 International Union of Crystallography 
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Table 1. The periodic arrangement of  the ordinary point groups ( OPGs ) 

1 2 3 4 5 6 7 8 9 
Anorthic Monoclinic[lx 3 

p m monoclinicnx 2 orthorhombic Tetragonal Trigonal Hexagonal Cubic 

1 A A 1 2 4 3 6 23 
2 s A D m 4 
5 S A 0 i 2 /m 4 /m  3 6 / m  m3 

12 B B 2 222 422 32 622 432 
13 s B C m mm2 4ram 3m 6mm 7~3m 
16 s B E m2m 7~2m 62m 
16' s B F 2mm 4m2 6m2 
22 S B 0 2/ m mmm 4/ mmm 3m 6/ mmm m3m 

2. The periodic arrangement of point groups and its 
connection with the form of tensors 

Table 1 lists the 32 OPGs,  some of which are in several 
orientations. Co lumn 1 gives the same number  to the 
rows that will be used in a similar  table of all SPGs. 
The OPGs are denoted in columns 4 to 9 by their 
H e r m a n n - M a u g u i n  symbols,* which also contain 
informat ion about the orientat ion of symmetry axes 
and planes as given in Table 2.4.1 of International 
Tables for Crystallography (1983). Table 1 contains 
the OPGs in all orientations in which they appear  in 
the corresponding holohedry  given in row 5 for 
anorthic and monocl in ic  OPGs and in row 22 for 
OPGs in the other crystal systems. An S in co lumn 
2 indicates that the OPGs in the corresponding row 
contain space inversion 1, an s that 1 appears  only 
in combina t ion  with a rotation. The letters A - F  in 
column 3 give informat ion about  the form of  tensors, 
as will be expla ined in detail later; 0 indicates a 
vanishing tensor. 

In order to describe tensors, the following right- 
handed  or thonormal  coordinate systems will be used: 
for cubic crystals, x , ,  x2 and x3 are in directions 
corresponding to the first entry in the H e r m a n n -  
Mauguin  symbol;  for tetragonal,  trigonal and 
hexagonal  crystals, x3 is in a direction corresponding 
to the first entry and xl in a direction corresponding 
to the second entry. (If  there is no second entry then 
xl may be any direction perpendicular  to x3.) For 
or thorhombic  crystals x, is in the direction of  the first 
entry, x2 of  the second and x3 of  the third. The 
monocl in ic  axis is chosen in the direction of x2 in 
column 4 and in the direction of x3 in co lumn 5. For 
anorthic crystals, any r ight-handed or thonormal  sys- 
tem may be chosen. Using these conventions,  the 
tensors take the form impl ied  by the IEEE Standard 
on Piezoelectricity (1978) if  the monocl in ic  axis is 
chosen parallel  to x2 and if  the other point  groups 

* Grimmer (1980) deviated from the usual Hermann-Mauguin 
conventions by interchanging the first and third entries for ortho- 
rhombic PGs in order to make the analogy between columns 
5, 6 and 8 evident. We return in the present paper to the usual 
Hermann-Mauguin conventions. 

that appear  more than once are chosen in the orienta- 
tions ram2, 42m and 62m.t  

The number  of  indices of  a tensor is called its rank 
r. The tensor may show interior symmetry if  it remains 
invariant  or changes sign under  certain permutat ions  
of its indices. Tensors t ransform as products of  r 
coordinates under  rotations; under  roto-inversions, 
i.e. rotations combined  with 1, the tensor may change 
sign in addit ion.  Tensors of  even rank that remain 
invariant  under  i and tensors of  odd rank that change 
sign under  T are usually called polar  tensors; tensors 
of  even rank that change sign and tensors of  odd rank 
that remain invariant  under  T are then called axial 
tensors. It is more convenient  for a discussion of  
formal properties to call any tensor that remains 
invariant  under  1 a (plus or) p tensor and one that 
changes sign a (minus or) m tensor. 

Tensors describing properties of  materials  (called 
'property '  or 'mater ia l '  tensors) are invariant  under  
the elements of  the PG of  the material.  Attention will 
be restricted in the fol lowing t o  such tensors. The 
PGs in rows 5 and 22 contain 1. They will be called 
Laue groups. Because m tensors change sign under  

they must vanish for the 11 Laue groups. The 
number  0 appears  therefore on the right side of  
co lumn 3 for the Laue groups. It follows that 
m tensors of  any rank can be different from zero for 
at most 21 of the 32 OPGs. If the PG contains only 
rotations (rows 1 and 12), there are obviously the 
same restrictions for p and m tensors. The same letter 
(A in row 1, B in row 12) appears  therefore in both 
subcolumns 3. Two OPGs that together with T gener- 
ate the same Laue group, are said to belong to the 
same Laue class. The OPGs in any of the columns 
4-9 fall into two Laue classes; the OPGs above the 
horizontal line belong to one Laue class, those below 
to the other. Because a p tensor is invariant  under  1, 
the restrictions imposed on it by an OPG depend  only 
on its Laue class. This is the reason why, on the left 
side of co lumn 3, A appears  in all rows above the 

t 62m is called 6rn2 in the I E E E  S tandard  on Piezoelectricity 

(1978), deviating in this case from the international conventions 
on the orientation of  the symmetry elements in the Hermann-  
Mauguin symbol. 
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line and B in all rows below. This completes the proof  
that the restrictions on the form of  material  tensors 
have the structure indicated in column 3. 

It will be shown that the forms C, D, E and F can 
be deduced immedia te ly  from A and B. Let A +  B 
denote a tensor that can be written as the sum of  two 
tensors satisfying the restrictions A and B, respec- 
tively, and A n B a te,aTor that s imul taneously  satisfies 
the restrictions A and B. The group in rows 12 and 
13 in the same column have the group in row 1 in 
common  and  generate together the group in row 22. 
Similarly,  the groups in rows 16 and 16' of  the same 
column have the group in row 2 in common  and 
generate together the group in row 22. A tensor that 
satisfies the restrictions B and C or E and F must 
vanish therefore,  B n C -- 0 and E n F = 0. The sum 
B +  C will satisfy the restrictions A, i.e. A D_ B +  C, 
similarly,  D___ E + F. Let nA denote the number  of  
independent  components  of  a tensor of  form A in 
the co lumn under  considerat ion.  We shall show nA = 
n~ + nc and no = riE + nj:, from which it follows that 
A = B + C  and D = E + F  because B n C = 0  and 
E n F = 0 .  

The groups in rows 1 and  2 in the same column 
generate together the group in row 5; they have a 
group in row 1 in common  that belongs to another  
column with ha l f  as many  elements in its groups 
(column 4 instead of 5, 5 instead of  6 and 7 instead 
of  8). The groups in rows 12 and 16 generate together 
the group in row 22; they have the group in row 12 
of  the ne ighbour ing  co lumn to the left in common,  
as above. Similarly,  the groups in rows 13 and 16' 
generate together the group in row 22; they have the 
group in row 13 of the ne ighbour ing co lumn to the 
left in common.  Because m tensors vanish for the 
groups in the rows 5 and 22, we conclude that A n D = 
0, B n E = 0 and C n F = 0. As above, one finds that 
A ' ~ _ A + D ,  B ' ~ _ B + E  and C ' ~ _ C + F ,  where A'  
refers to columns 4, 5 or 7 if  A refers to columns 5, 
6 or 8, respectively. We shall  show hA'= hA+ no,  
riB, = nB + nE and nc, = nc  + nF, from which it follows 
that A' = A + D because A n D = 0 and, similarly,  that 
B ' = B + E  and C ' = C + F .  Because A ' = A + D a n d  
A n D = 0, the form D is de termined uniquely  if  the 
forms A and A' are known,  so that we can write 
D = A ' - A  and similar ly E = B ' - B ,  F = C ' - C .  
From A = B + C  and B n C = 0  it follows that C =  
A - B ,  so that all the forms C, D, E and F can be 
expressed in terms of  forms of  types A and B. 

The number  of  independen t  components  of  a tensor 
in a material  with point  group G having elements g~, 
i =  1 , . . . ,  N, is given by 

N 

n = ( 1 / N )  ~, x(g,) ,  (1) 
i = l  

where x (g i )  is the character  of  the element  gi in the 
representat ion corresponding to the tensor under  con- 

sideration.* Consider  as an example  (1) for a given 
m tensor and the three point  groups 6, 622 and 6ram. 
Six of  the twelve elements of  6ram are rotations that 
appear  also in 622. They form t h e  group 6. The six 
other elements of  6ram are the six other rotations of  
622 followed by 1. Denote  by ri, i =  1 , . . . , 6 ,  the 
rotations in the group 6, by r,, i -- 7 , . . . ,  12, the rota- 
tions in 622 but not in 6. Then,  

r i 6 2 2 = ~ 2  x ( r i ) +  ~ x (r i )  , 
i = l  i = 7  

n 6 ~ = ~  x ~ )  - I; x (~ , )  , 
i = l  i = 7  

6 

n6 = 1  E x ( r i )  • 
i=1  

It follows that n 6 = n622+ n6mm. A similar  argument  
holds for the groups in the same rows but a different 
co lumn (4-9) of  Table 1, giving nA = nn + nc. The  
proofs that n o  = nE + nF,  hA' = nA h- n o ,  rl B, = Ii B d- tiE, 

nc, = nc + nF follow along the same lines. Notice that 
ne = nF, i.e. nD is always even. t  

3. An example: tensors of third rank symmetric in two 
of their three indices 

The optical activity of a crystal can appear  or change 
in an electric field E: 

gjk ( E ) =  gjO + A,jkE, + BjktmE, E,,, + . . . ,  (2) 

where gO is the gyration tensor in the absence of  a 
field (see e.g. Shuvalov, 1988). The tensor g may be 
considered symmetr ic  (see e.g. Nye, 1957), whence 
the tensor A = Aijk of  l inear  electrogyration is sym- 
metric in its last two indices and the tensor B = Bjktm 
of quadrat ic  electrogyration is symmetr ic  in its first 
two and its last two indices. Because g and E are of  
type m, A will be of type p and B of type m. The 

* The traditional presentation, most clearly given by Niggli 
(1955), starts by considering polar tensors only. The number of  
independent components is then given by 

n = ( 1 / N )  ~ x (g , ) x j (g , ) ,  
i=1 

where X is the character of  a polar representation and Xj the 
character of the totally symmetric representation (Xj -~ 1) for polar 
tensors and of the  antisymmetric representation (Xj = 1 for rotations 
and Xj = -1  for roto-inversions) for axial tensors. It seems that the 
current presentation is not only simpler but also logically more 
satisfactory. It should be stressed, however, that the remainder of 
this paper does not depend on whether the reader adopts the 
author's point of  view or prefers the traditional one. 

t These results give general proofs of  regularities that one may 
observe in the tables of  Niggli (1955) and indicate how the tables 
could be written more compactly. The results show also that a 
correction is needed in his Table 5, where 1 instead of  0 should 
appear on the left side (A') of  column 43m in the rows 3(3m - A'), 
3(3-A), 3(m-A')  and 3 ( 1 -  A). 
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form of the fourth-rank tensor B for the various point  
groups will be given in § 5 (Fig. 2). 

A crystal may develop an electric polarizat ion P if 
it is subject to a stress (r, 

P i  = d o k O ' j k "  

The tensor (r being symmetric,  the piezoelectric tensor 
dok can also be chosen symmetr ic  in its last two indices 
(see e.g. Nye, 1957). Because P is of  type m and (r 
of  type p, d will be of type m. 

A third-rank t e n s o r  Tij k that is symmetric  in its last 
two indices can be expressed by a matrix if  the last 
two indices are replaced as follows by a single one 
running from 1 to 6: 

1 2 3 4 5 6 (3) 
j , k  1,1 2,2 3,3 2,3 3,1 1,2 

1 2 3 

A = B + C  t3 (7::: A -  /3 
D =  I;; + F E F =  l)  -- E 

Rows 1-6: 
Rows 2', 3', 5': 

Anorthic 
Monoel. 1[ x2 

Monocl. In ~+~ 
Orthorhombic 

Tctragonal 

Trigonal 

I-lexagonal 

Cubic 

O O O O O 0  

g O 0 0 0 0  

O O O O O O  

• . .  . • • • 

• . . • • • 

• • • • . • 

• • • - . • 

• • • • . • 

• . . • • • 

• • . . 

• . . • 

11-,--.41 • • • 

• . . • • . 

. . . .  • 

• . . • • • 

• • • • • • 

• . . • • • 

• . . • • . 

. . . . .  • 

• • • . . . 

• . . • • . 

• • • . • • 

• . . • . o l l  
• • • . • . 

. . . .  • . 

• " " • " ' 2 

• • • • . . 

. . . . . . . . .  i 

• • • • . . 

. . . . .  • 2 +' 

. . . .  • . 

1 

i i l / a  
0 - - - . 0  • • . . 

1 

iii/ ' 
~ . . . .  

1, 

~ ' 4  
0 - - - ' 4  • • . . 

i i i /  s 
I 

~ s ,  
. . . . . .  

- - I  

• . . • • . 

. . . .  • • ~ 

. . . . .  • 

Key to notation 
z e r o  C O l u p o n e n t  

• n o n - z e r o  c o n l p o l l e n t  

~-e equal components 
components numerically e(tual , but opposite in sign 
a component equal to - n  times the 

,o" large dot component to which it is joined 

Fig. 1. F o r m  o f  the  ma t r i ce s  fo r  t h i r d - r a n k  tensors ,  s y m m e t r i c  in 
two  o f  the i r  th ree  indices .  T h e  th i cke r  b o x e s  c o n t a i n  the  m a t r i c e s  
A a n d  B, wh ich  a p p e a r  fo r  i t enso r s  a n d  d e t e r m i n e  the  o t h e r  

matrices. 

This reduces the number  of  components  from 33 = 27 
to 3 x 6 = 18. In order to main ta in  the convention of 
summat ion  over repeated indices in passing from 
Ai = Tqkljk to  Ai = T~,B~, the factor 2 has to be intro- 
duced in either B or in T: 

Ti~, = Tijk for ~ = 1, 2 or 3, 
(4) 

T~,~ = nTok for/z  =4 ,  5 or6 ,  

where n = 1 if  the factor 2 has been incorporated in 
the definit ion of B and n = 2 otherwise. Usually,  one 
puts n = 2 for d (see e.g. Nye, 1957) and A (see e.g. 
Zheludev,  1978; Landolt-BSrnstein,  1984).* With this 
matrix notation, the letters A - F  of Table 1 take the 
meanings  given in Fig. 1. It shows that, for each row, 
the matrix in column 1 can be written as a sum of 
the matrices in columns 2 and 3 and that the matrices 
in columns 2 and 3 have only the zero matrix in 
common,  il lustrating our general results A = B +  C, 
D = E + F and B c~ C = 0, E c~ F = 0. Similarly,  one 
finds that for each co lumn the matrices in rows 2 and 
2' (3 and 3', 5 and 5') have only the matrix 0 in 
common and that their sum has the form of  the matrix 
in row 1 (2,4),  i l lustrating again general results 
derived in the preceding section. 

Fig. 1 gives the form of  the matrices s imul taneously  
for l inear electrogyration, piezoelectricity and 
piezomagnet ism.  They are given separately for 
piezoelectricity in Landolt-BSrnstein (1979)t and for 
l inear electrogyration in Landolt-BSrnstein (1984).:~ 

4. The restrictions put on material tensors by the 122 
Shubnikov point groups 

The extension of Table 1 from the 32 OPGs to all 
122 SPGs is given in Table 2. 

The capital  letters S, T and U in column 2 indicate 
that the SPGs in the corresponding rows contain 
space inversion 1, t ime inversion 1' and space- t ime 
inversion 1', respectively. Small  letters s, t and u 
indicate that the groups contain these inversions only 
combined  with non-trivial  rotations (i.e. different 
from the identi ty 1). 

Tensors may be invariant  or change sign under  1, 
1', 1'. If  T is followed or preceded by 1' then 1' is 
obtained.  Hence if  the tensor changes sign under  T 
and 1' it must  be invariant  under  1'. Considerat ions  
of  this type l imit  the number  of  possible combinat ions  
of  invariance and sign changes from 16 to 4. These 
four combinat ions  correspond to the four irreducible 

* Notice that n = 2 amounts to defining g,, = 2gjk if/z = 4, 5 or 
6 when jk is replaced by/z in (2). 

t Landolt-BSrnstein (1979, 1984) follows the IEEE Standard on 
Piezoelectricity (1978) in writing 6m2 for an orientation of the 
group that is denoted by 62m according to the international conven- 
tions• 

In Table $2, ~rt and 1762 should be replaced by 0 in Laue class 
2/m; ~4n and 27/lX by -7/4n and -2~hn in Laue class 3m. 
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Table 2. The periodic arrangement of the Shubnikov point groups (SPGs) 

1 2 3 

i s t u 

1 A A A A 
2 s A A D D 
3 t A D A D 
4 u A D D A 
5 S A A 
6 T A A 
7 U A A 
8 S t u A D 
9 s T u A D 

10 s t U A D 
11 S T U A 

12 B B B B 
13 s B B C C 
14 t B C B C 
15 u B C C B 
16 s B B E E 
17 t B E B E 
18 u B E E B 
19 s t u B C E F 
20 s t u B F C E 
21 s t u B E F C 
22 S B B 
23 T B B 
24 U B B 
25 S t u B C 
26 s T u B C 
27 s t U B C 
28 S t u B E 
29 s T u B E 
30 s t U B E 
31 S T U B 

4 5 6 7 8 9 
A n o r t h i c  M o n o c l i n i c  

M o n o c l i n i c  O r t h o r h o m b i c  T e t r a g o n a l  Tr igona l  H e x a g o n a l  C u b i c  

1 2 4 3 6 23 
m ~ g 
2' 4' 6' 

2/m 4 /m  3 6 /m m3 
11' 21' 41'  31' 61' 231' 

i '  2 / m '  4 / m '  3' 6 / m '  m '3 '  
2' /m'  4 ' /m 6 ' / m '  
ml '  41' 61' 

2 ' /m 4 ' /m'  6 ' /m 
l l '  2 / m l '  4 / m l '  31' 6 / m l '  m31'  

2 222 422 32 622 432 
r n  ram2 4ram 3m 6ram 43m 
2' 2 '2 '2 42 '2 '  32' 62'2 '  4 '32 '  
m' m' m'2 4m'm'  3 m '  6 m ' m '  4 ' 3 m '  

m2m 7~2m 62m 
2'22'  4 '22'  6 '22'  

m'2m' 71'2m' 6'2m' 
m'2'm 4 2 ' m '  62 'm '  
ram'2' 4'm' m 6' m' m 
2'ram' 71'm2' 6' m2' 

2/ m mmm 4/ mmm 3m 6/ mmm m3m 
21' 2221'  4221'  321' 6221'  4321'  

2/ m' m' m' ra' 4/ m 'm'm'  3' m' 6/ m' m'm'  m'3' m' 
2 ' /m'  m' m' m 4/rare're' 3m' 6 /mm'm '  rn3m' 

m l' ram21' 4mm l' 3 m l '  6mml '  4 3 m 1 '  
2' /m mmm' 4 / m ' m m  3'm 6 / m ' m m  m'3'm 

m' mm ' 4 ' /mmm'  6 ' /m 'mm'  
m2ml '  4 2 m 1 '  62m1 '  
mm'm 4 ' /m 'm 'm 6 ' /mm'm 

2 /m 1' mmm 1' 4 / m m m  1' 3m 1' 6 /mmm 1' m3m 1' 

Table 3. The four tensor types defined by their 
behaviour under inversions 

1 i 1' i '  T e n s o r  type  

1 1 1 1 i tensor, invariant under all inversions 
1 1 - 1  - 1  s tensor, invariant under _space inversion 
1 - 1  1 - 1  t tensor, invariant under l ime inversion 
1 - 1  - 1  1 u tensor, invariant under space-time inversion 

representations o f  the group formed by 1, 1', 1' and 
1. The combinations are given in Table 3, where sign 
change is denoted by - 1  and invariance by 1. 

Material tensors are invariant under the transfor- 
mations contained in the SPG of  the material. It 
fol lows that s tensors vanish for SPGs containing 1' 
or 1' (marked T or U, respectively, in column 2 o f  
Table 2); t tensors vanish for groups marked U or S 
and u tensors for groups marked S or T. The vanish- 
ing of  a tensor is marked by a blank space in column 
3 of  Table 2 instead o f  the 0 used in Table 1. Tensors 
o f  type s, t or u can be different from zero in (at the 
most) 69 o f  the 122 SPGs. 

Similar methods to those used for determining the 
distribution o f  the forms A -  F in column 3 of  Table 
1 determine also their distribution in the correspond- 
ing column of  Table 2 and show that no additional 
forms appear. The OPGs correspond to the rows 
without T, U, t or u in column 2. For these groups 

the same restrictions hold for i and s tensors because 
both are invariant under T and there are the same 
restrictions for t and u tensors, which change sign 
under 1. The same letters therefore appear in the first 
two and in the last two subcolumns 3 for the rows 
containing OPGs; a p tensor may be of  either i or 
s type, depending on its behaviour under time inver- 
sion, and an m tensor may be of  either t or u 
type. 

The 7 holohedries and the 11 Laue groups are 
redefined to contain also 1', i.e. they are now given 
in rows 11 and 31 instead of  5 and 22. Two SPGs 
that together with T and 1' generate the same Laue 
group are put into the same Laue class. All SPGs in 
rows 1-11 of  a given column belong to one and the 
same Laue class and the ones in rows 12-31 to 
another. The restrictions imposed on the form of  an 
i tensor by the SPG depend only on its Laue class. 
They are marked A or B. It was shown in the last 
section how the restrictions C - F  fol low from them. 
Therefore, if the form of  an i tensor is known for the 
11 Laue classes (for both orientations o f  the mono- 
clinic Laue class) we can immediately give the form 
of  the corresponding s, t and utensors  for all 
122 SPGs. 

The first and second entries o f  the Hermann-  
Mauguin symbol  differ in the rows 16-21 and 28-30 
o f  column 5. In columns 6 and 8 the second and third 



H A N S  G R I M M E R  231 

Table 4. Comparison between the symbols A - U  
employed by Birss (1964) and the symbols A - F  of the 

present paper 

A B C 

Anorthic/monoclinicll x2 A 
Monoclinicllx3/orthorhombic B D E 
Tetragonal F H I 
Trigonal K (L) (M) 
Hexagonal N P Q 
Cubic S T U 

D E F 

C 
G J 

O R 

Table 5. Correspondence between the four types of 
tensors distinguished in this paper and the eight types 

of Birss (1964) 

This Birss 
paper Rank even Rank odd 
i tensor Polar i tensor Axial i tensor 
s tensor Polar c tensor Axial c tensor 
t tensor Axial i tensor Polar i tensor 
u tensor Axial c tensor Polar c tensor 

entries differ in the same rows. I f  these entries are 
exchanged then E has to be replaced by F and F by 
E in column 3. This procedure  gives rows 16'-21' and 
28'-30'.  I f  we add them to Table 2 (cf. row 16' in 
Table 1), then the table will contain the SPGs in all 
orientat ions in which they appea r  in the correspond-  
ing holohedry.  

Let us reconsider  the example  of  § 3. The elec- 
t rogyrat ion tensor A is of  type i and B of  type t. Also, 
the piezoelectric tensor d is of  type t. A crystal that 
is subject to a stress o" may  develop also a magnetiz- 
ation I (see e.g. Birss, 1964), 

li = QOk%k" 

As for the piezoelectric t e n s o r  dijk, the piezomagnet ic  
tensor  Qqk can be chosen symmetric  in its last two 
indices. The indices j, k are again replaced by a single 
index /z ,  running from 1 to 6. Because I is of  type s 
and tr of  type i, Q will be of  type s, too.* The form 
of Q in the 122 SPGs is obtained from Table 2 and 
Fig. 1. 

5. Discussion and illustration of the results 

Birss (1964) also uses in his Tables 4a  and 7 letters 
to indicate the form of  proper ty  tensors in the 122 
SPGs. The connection between his letters A - U  and 
our  letters A - F  is given in Table 4. 

The present  paper  follows Nye (1957) and Landolt-  
Brrns te in  (1979, 1984) in choosing the orientat ion of  
the or thogonal  axes x t ,  x2, x3 relative to the symmetry  
axes of  the material  in a way compatible  with the 
I E E E  s tandard.  For compar ison,  the or thogonal  axes 
used by Birss differ f rom ours for trigonal crystals by 
a 30 ° rotat ion about  the principal  symmetry axis. This 
is the reason why our tr igonal A is split differently 
by his L and  M than by our  trigonal B and C. 

There are a number  of  fur ther  differences between 
Birss's and the present  approach:  

1. Birss does not note the connections between 
different forms,  which al lowed us to express the forms 
C, D, E and  F in terms of  A and B. 

* The behaviour of vectors under i, 1' and 1' has been discussed 
by Ascher (1974). 

2. Whereas  in the present  paper  the orientat ion of  
the tensor indicated by the letter symbol always corre- 
sponds to the orientat ion indicated by the H e r m a n n -  
Mauguin  symbol,  Birss (1964) has to use brackets  in 
his Table 7 in order  to mark  the cases in which the 
two orientat ions do not agree. The reason for this can 
be seen from our  Tables 2 and 4. Birss uses a minimal 
set of  different forms, 21 instead of  27, as shown in 
Table 4. Take as an example  our or thorhombic  form 
C (form E of  Birss). Table 2 shows that it describes 
the form of an s tensor for m'2'm (and 2 ' re 'm) ,  of  a 
t tensor for mm'2' (and m'm2') and of  a u tensor  for 
2'ram' (and m2 'm ' ) ,  which denote the same SPG in 
six different orientations.  Birss considers this point  
group only in the orientat ion 2'm'm in his Table 7. 
This is the reason why he has to write ( E )  in the case 
of  t and u tensors.* 

3. Birss only considers the 90 'magnetic" point  
groups,  omitt ing the 32 'grey'  SPGs, which are 
contained in the rows marked  T in column 2 of  
Table 2. 

4. Birss calls a tensor of  rank m 'polar '  if it trans- 
forms under  rotations and  rotations combined with 
T (roto-inversions) as a product  of  m coordinate  
vectors and 'axial '  if an addi t ional  sign change occurs 
for roto-inversions. According to whether  a tensor 
remains invariant  or changes sign under  1' he calls it 
an i or a c tensor. He arrives in this way at eight types 
of  tensors that  pairwise correspond to our  four  types, 
as indicated in Table 5. 

The present  approach  simplifies the presentat ion 
of  the results and makes it evident that 1, 1' and 1' 
play an analogous  role in the point  groups.  It makes  
evident also the analogous  behaviour  of  the SPGs in 
the various columns of  Table 2. 

Some authors  who, in a similar fashion to Birss, 
use a minimal set of  different forms and the H e r m a n n -  
Mauguin  symbols with entries only in some definite 
order  do not care about  the agreement  of  the orienta- 
tions. This is a source of  much confusion in the 
published literature. 

The decisive advantages  of  the present  method  are 
listed in points 1 and 2: they allow the use of  the 

* Brackets are lacking around R in his Table 7 in the two columns 
corresponding to t tensors for 6'2m' and in the two columns corre- 
sponding to u tensors for 6m'2'. 
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Rows 1-6: A = B + C  B ~ C = A - B  
Rows 2',3', 5': D = E + F E F = D - E 

t J 

• • • • • • • • • • • . . . .  • . 

i 

• • • • • • • • • • • . . . .  • . 

Anorthie • • • • • • • • • • • . . . .  • • 
Monocl. JJ z2 • • • • • • • • • • • • • • • • • 

• • • • • • • • • . • . . . .  • • 

• • • • • • . . . • . • • • • . • 

Mo,,od. II ~3 

Ortinorhombic 

Tetragonal 

o o o . . o  o o • . .  

o o o . . o  • g o . .  

• g o . . •  • o o . .  

l - . . . o o  . . . .  • .  

• . . o o  . . . . .  • 

o o o . . o  . . . . .  

• . - o o  . . . . .  • 

- . - o o  . . . . .  • 

• . . o •  . . . . .  • 

o o • . . o  . . . . .  

o o o . . o  O B J . .  

• . . g o  . . . .  • .  

. . . . .  • . 

. . . .  • • . 

• • • • . . . 

. . . .  • . . 

• , • . . • . . 

. . . .  • . . 

• • • • • , 

. . . . . .  • 

. . . . .  • • 

XI[XI . . . . . . . .  
• • . . ~ • . . . . . . . . .  

X : : : %  : : : /  

X[IX[ . . . . . . . .  I 
• • • • o--.-o . . . . . . . . .  • 

• " X 

o _ . / . .  . x  . . . . .  x , - , /  . . . .  
tlexagonal p i 

i . i i 

 i!i ii! 
Cubic . . . . . .  

i i i \ i i i \ : : : : : :  

1 

2 

• 2 ~ 

! 

3 

! 

3' 

5 

! 

5' 

! 

6 

Key to notation components mnmerically equal, 
z e r o  C O m l m n e n t  b u t  o l ) p o a i t e  i n  s i g n  

• n o n - z ,  e r o  c o m p o n e n t  '~. "~. d : m  ] t i m e s  t h e  l a r g e  d o t  

X ' - ' ~ " - ( M u  - Mt~_) ~¢ ,o" - k n  / c o m p o n e n t  t o  w h i c h  

e q u a l  c o m l ~ m e n t s  X ) ~  ~ n / m  t h e y  a r e  j o i n e d .  

Fig.  2. F o r m  o f  the matrices for fourth-rank tensors, symmetric in 
the first and second pairs of  indices. The thicker boxes contain 
the matrices A and B, which appear for i tensors and determine 
the other matrices. (Mn~ denotes the element in the upper left 
corner of  the matrix, M12 its neighbour to the f igh t . )  

numerous results available on the forms of  i tensors 
in order to write down the forms o f  the corresponding 
s, t and u tensors. Take as an example  the form of  
the elasto-optic tensor Pijk~, which expresses Aft, the 
change in the dielectric impermeabil i ty at optical 
frequencies,  in terms of  the strains. This tensor is o f  
type i and is symmetric with respect to the first and 
the second pairs of  indices. Each pair is replaced by 
a single index running from 1 to 6 in order to express 
the tensor by a matrix, i.e. i j ~ t z  and k l~  v, as in (3). 
This reduces the number of  components  from 34 = 81 
to 62 = 3 6 .  The price that one has to pay is the 
introduction of  factors similar to (4):, 

T~,~ = T~jkt i f / z  = 1, 2 or 3 and v = 1, 2 or 3, 

To~,, = mTijkl i f / z  = 4, 5 or 6 and ~, = 1, 2 or 3, 

T,,=nT~jk~ i f p = l ,  2 o r 3  and v = 4 , 5 o r 6 ,  

T~,~ = m n  Tijkl i f / z  = 4, 5 o r  6 a n d  v = 4, 5 o r  6, 

where m and n are either 1 or 2. With the usual 
definitions, m = n = 1 for the elasto-optic coefficients 
p~,~ and m = 1, n = 2 for the piezo-optic  coefficients 
q,,,, which express A/3 in terms of  the strains and the 
stresses, respectively. The forms o f  these coefficients 
have been listed e.g. by Nye  (1957) and Landolt- 
B/Srnstein (1979). With the form types A and B 
known,  the types C, D, E and F can be deduced as 
shown in Fig. 2. Together they give the matrices 
describing quadratic electrogyration. To the author's 
knowledge ,  these matrices are published here for the 
first time. Notice  that all form types in Fig. 2 are 
different and different from 0. It fol lows that quadratic 
electrogyration can appear in all 21 non-centrosym- 
metric OPGs; it has been found experimental ly  in 
quartz (see Zheludev,  1978). 
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